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Abstract

The Co-Processing Intrusion Detection System (CuPIDS) project is exploring how

tom improve information system security by dedicating computational resources
to system security tasks in a shared resource, multi-processor (MP) architecture.

Our research explores ways in which this architecture offers improvements over the
traditional uni-processor (UP) model of security. There are a number of areas to

explore, one of which has a protected application running on one processor in a

symmetric multiprocessing (SMP) system while a shadow process specific to that

application runs on a different processor, monitoring its activity, ready to respond

immediately if the application violates policy. Experiments with a prototype Cu-

PIDS system demonstrate the feasibility of this approach. Fine-grained protection

of the real-world application WU-FTP resulted in less than a ten percent slowdown

while demonstrating CuPIDS' ability to quickly detect illegitimate behavior, raise
an alarm, automatically repair the damage done by the fault or attack, allow the

application to resume execution, and export a signature for the activity leading up
to the error.
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1 Introduction

This paper describes research into the Co-Processing Intrusion Detection Sys-

tem (CuPIDS)-an exploration into increasing information system security by

dedicating computational resources to system security tasks in a shared re-

source, multi-processor (MP) architecture. We believe this architecture will

allow IDS to use higher fidelity monitoring models, particularly with regard

to the timeliness of detection, and will also increase system robustness in the
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face of some types of attacks. Our philosophical foundations are fourfold: high
assurance is important, a great deal of information about how systems are
supposed to operate is often available but rarely used, MP computer systems
are becoming commonplace, and finally that information systems will be vul-
nerable to attack or erroneous behavior for the foreseeable future.

While a body of research into co-processing techniques for tasks such as secure
booting and digital rights management exists [1,2], not nearly as much work
has been done in investigating how generalized security tasks can benefit from
dedicated co-processing. Most past and present Intrusion Detection System
(IDS) architectures assume a uni-processor environment, or do not explicitly
make use of multiple processors when they exist. The advent of multicore
processors from the mainstream processor manufacturers such as Sun, Intel
and AMD will result in MP systems becoming more common outside the server
farm. We believe this affords us novel opportunities to be creative with how
system resources are allocated.

We are concerned with a very general threat model that assumes:

"* Processes running at any privilege level in the production parts of the system
may be compromised at any time after boot is complete.

"* Attacks or faults may be caused by the activities of local or external users
or a combination of both.

"* Attacks or faults may result in a system compromise without ever causing
a context switching event.

We believe that under some circumstances CuPIDS can be more effective
than Standard Uni-processor-based Intrusion Detection/Intrusion Prevention
Systems (StUPIDS) 1.

For our purposes more effective is shown by demonstrating that:

(1) Running concurrently with attack code affords CuPIDS opportunities to
detect and respond to attacks that are not available to StUPIDS.

(2) Because the opportunity exists to detect attacks while they occur without
waiting for a context-switching event (either between user processes or
between user and kernel mode) CuPIDS may be able to respond more
quickly and attacks may be detected with higher fidelity.

These are advantages that are difficult or impossible to achieve on a uni-
processor system-no matter how powerful.

1 The name StUPIDS is in tribute to the work done in Purdue's Coast Laboratory
on the IDIOT intrusion detection system[3].
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2 Background

This section describes the time and intrusion detection domain with which we
are concerned and briefly references related research.

2.1 Time Domain

Because some of the primary gains we anticipate from CuPIDS are time-
related, we need to clarify what time domain we are working in. To do so we
draw from a recent categorization of computer security systems. Kuperman's
Ph.D. dissertation [4] describes four major timeliness categories in which de-
tection can be accomplished: real-time, near real-time, periodic and retrospec-
tive. It is in the category of real-time and near real-time that CuPIDS offers
significant gains over StUPIDS.

To specify what we mean by real-time and near real-time we borrow Kuper-
man's notation. We represent the set of events taking place in a computer
system by the set E. This set contains suspect events B such that B C E and
there exist events a, b, and c such that a, b, c E E and b E B The notation
t, represents the time of occurrence of event x. Finally, we need a detection
function D(x) that determines the truth of the statement x E B.

Real-time: Detection of a bad event b takes place while the system is op-
erating and is further restricted to mean that detection of b occurs before
an event, c, dependant upon b takes place. Given E, real-time detection
requires the ordering

ta < tD(b) < tc

Near real-time: Detection of a bad event b occurs within some, typically
small, finite time 6 of the occurrence of b. This requires the ordering

Itb - tD(b)I < J

While no complete detection function D(x) exists, there are a great number of
bad events, BD = {b 0, bl, ... , b,, E B for which we do have effective detection
functions. Assuming the existence of identical CuPIDS and StUPIDS detection
functions, DCuPIDS(BD) and DstUPIDS(BD) CuPIDS offers improvements in
guaranteed detection time. On a uni-processor system in which the StUPIDS
runs as a normal task the soonest it can possibly detect a bad event, bi, is
when a context switching event occurs after tb, but before to, and the scheduler
chooses the StUPIDS to run. In the best case bi involves the execution of a
system call or some other blocking event, the scheduler picks the appropriate
StUPIDS process to run next, and bi is detected before ci can occur. In the
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worst case the system is compromised before the StUPIDS has an opportunity
to run and detect bi.

Other complications include the relative priority of StUPIDS processes to
other processes in the system, and even if a StUPIDS process is chosen to run,
its portion of DstUPIDS(BD) may not include bi. Therefore even though the
StUPIDS is capable of detecting bi it may not do so before the production
process is made active again and tc, occurs. This means that even though
DstuPIDs(bi) exists a StUPIDS can at best claim near-realtime detection with
6 = CPUQuantum. In the case of a StUPIDS running on a MP machine, the
appropriate monitoring process may be executing at the right time; however,
there is no guarantee that this is the case. CuPIDS reduces the uncertainties
described above by ensuring, whenever possible, the appropriate monitor is
executing, thus offering real-time detection capability.

2.2 Detection Domain

Among the factors that make intrusion detection in generalized computing
environments difficult is the wide range of capabilities that must be protected.
By forcing the security system designer to cover a wider range of resources, the
defensive assets are, in a sense, "stretched thinner" than they will be in the
highly focused CuPIDS environment. CuPIDS' ability to concentrate the right
defenses at the right time on critical tasks coupled with the ability to use well
defined security boundaries as defined by the program designer and system
security policy allows the exploration of highly effective intrusion detection
functions.

While our research is generally applicable to any computing environment in
which multiple processors are available, we anticipate that it will be most
useful in the dedicated server environment. Ideally, these machines are not used
for general purpose computing and run only a streamlined set of applications
dedicated to the service the system provides. These simplified configurations
are not only simpler to maintain, but their smaller attack surfaces [5] are
simpler to defend as well.

2.3 Prior Research

There exists an enormous body of work into techniques for detecting and pre-
venting violations of security policy. Axelsson's in-depth, thorough taxonomy
and survey of the field of intrusion detection in 2000 is a good starting point
for those unfamiliar with the field [6]. We draw from those techniques and aug-
ment them in ways that make use of the MP paradigm. Many of the specific
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intrusion detection techniques a CuPIDS will use differ from their StUPIDS
counterparts only in the real-time, simultaneous monitoring nature of their
use. Of particular interest to us are those efforts that separate runtime error
checking from runtime execution, those modeling the state of the production
process externally, and those making use of coprocessors or virtual machine

architectures in performing monitoring tasks. This section presents only a
sampling of the relevant literature given in [7]

2.3.1 Debugging

An example from the separate runtime error checking body of research is that

done by Patil and Fischer [8] on detecting runtime errors in array and pointer
accesses. They point out that including runtime error checking may slow ap-
plications by as much as a factor of 10, which is an enormous price to pay
given that most runs of a well-tested program are error-free. Therefore once

debugging and testing is complete, runtime error checks are disabled before
the code is placed into production use. While this makes sense from a perfor-
mance perspective, it is dangerous because errors that may have been caught
by those runtime checks go undetected, potentially causing severe damage.

The authors responded by creating guard programs that model the execution
of the production program, but only at the pointer and array access level. The

guards include all runtime checks on pointer and array bounds and were capa-
ble of detecting many runtime errors that evaded the software testers during
development. These guards were run as batch processes using trace informa-
tion stored by the production process. The paper also discussed having the
guard run on a separate processor or as a normal process, interleaving execu-

tion with the production process. The runtime penalty perceived by the user
was typically less than 10%. We use the idea of exporting runtime checks to
a shadow process; however, our work differs from theirs in that we focus on
real-time monitoring of the actual memory locations in use by the production
process as well as a much larger set of monitoring capabilities.

2.3.2 External Modeling

Research into performing intrusion detection via external modeling of appli-

cation behavior such as the work done by Haizhi Xu et al. in using context-
sensitive monitoring of process control flows to detect errors is a good example
of external modeling [9]. They define a series of "waypoints" as points along a
normal flow of execution that a process must take. They focused their efforts
on the system call interface and demonstrated good results in detecting at-
tempts to access system resources by a subverted process. CuPIDS makes use

of a similar idea to their waypoints in its checkpoints, those points in both the
interactive and passive systems where CuPIDS is notified of events in which
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it is interested; however, CuPIDS checkpoints are much finer-grained and are
generated within the production process as well as its interaction with the
external environment. As an example, CuPIDS uses function call entry and
exit information to perform rough granularity program counter tracking and
validation as well as model a program stack for use in detecting illegitimate
control flows within a process code segment.

Related work by Feng et al. [10] describes novel work in extracting return ad-
dresses from the call stack and using abstract execution path checking between
pairs of points to detect attacks. Finally, Gopalakrishna et al. [11] present good
results in performing online flow- and context-sensitive modeling of program
behavior. Gopalakrishna's Inlined Automaton Model (IAM) addresses ineffi-
ciencies in earlier context-sensitive models [12,13] by using inlined function
call nodes to dramatically reduce the non-determinism in their model while
applying compaction techniques to reduce the model's memory usage. Using
an event stream generated by library call interpositioning, IAM is shown to
be efficient and scalable even in a StUPIDS architecture. The techniques used
by IAM fit naturally into the CuPIDS architecture. The model simulation can
be run as a CSP, getting its inputs from the CuPIDS event streams.

2.3.3 Virtualization and Co-processors

ID has been performed using both machine virtualization and the use of dedi-
cated co-processors [1,2,14-17]. An example of the latter category includes the
work done by Zhang, et al. in describing how a crypto co-processor is used to
perform some host-based intrusion detection tasks[15]. In their research they
examine the possible effectiveness of using hardware designed for securely
booting the system to run an intrusion detection system. The benefits from
doing so include protecting the IDS processor from the production processor,
and offloading IDS work from the main processor onto one dedicated for that
task. Strengths of this approach include high attack resistance for code run-
ning in the co-processor system. Drawbacks of the approach include the lack
of ready visibility into the actions of the main processor and operating system.

These strengths and drawbacks also exist in the use of virtual machine ar-
chitectures. Garfinkel and Rosenblum discuss a novel approach to protecting
IDS components [17]. They pull the IDS out of the host and place it in the
virtual machine monitor (VMM) with the primary goal of enhancing attack
resistance. This approach has the benefit of largely isolating the IDS from code
running in the virtual host. The VMM approach has much in common with
the reference monitor work discussed by Anderson [18] and Lipton [19] in that
it provides a means by which the IDS can mediate access between software
running in the virtual host and the hardware. It can also interpose at the
architecture interface, which yields a better view into the system operation
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by providing visibility into both software and hardware events. A traditional
software-only IDS does not have this advantage. Of course, the IDS running
in the VMM has visibility only into hardware-level state. This means that
the IDS can see physical pages and hardware registers, but must be able to
determine what meaning the host O/S is placing on those hardware items.
By running as part of the host O/S, CuPIDS maintains complete visibility
into the software state of the entire system, but currently lacks the protection
afforded VMs and secure co-processor architectures. Future work on CuPIDS
will use hardware protection mechanisms such as those in the Intel IA32 [20]
processor line to provide protection of security specific components as well as
critical operating system components.

3 CuPIDS Architecture

The CuPIDS architecture was initially presented in [21], and is summarized
here.

3.1 High Level Design

CuPIDS operates using the facilities and capabilities afforded by a general
purpose symmetrical multi-processing (SMP) computer architecture. Com-
mon operating systems such as Windows, Linux, and FreeBSD running on
SMP architectures use the CPUs symmetrically, attempting to allocate tasks
equally across the CPUs based upon system loading [22]. CuPIDS differs from
these architectures in that at any point in time one or more of the CPUs in a
system are used exclusively for security related tasks. This asymmetrical use of
processors in a SMP architecture is a significant departure from normal com-
puting models, and represents a shift in priority from performance, where as
many CPU cycles as possible are used for production tasks, to security where a
significant portion of the CPU cycles available in a system are dedicated solely
to protective work. One possible CuPIDS software architecture is depicted in
Figure 1. The dark components represent production tasks and services and
run on one CPU while the light components represent the CuPIDS monitors
and run on a separate CPU. The regions of overlap depict CuPIDS ability to
monitor the resource usage of production components.

The operating system as well as user processes are divided into components
that are intended to run on separate CPUs. The intent behind this separation
is twofold: performance, where we seek to minimize the runtime penalty im-
posed by the security system, and protection, where we are concerned with the
completeness of detection. By ensuring the processes responsible for detecting
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Fig. 1. Basic software architecture

bad events are actively monitoring the system during periods in which bad
events can occur-the CuPIDS architecture requires that when a 'CPP is exe-
cuting its associated CSP is also on a CPU-we provide a real-time detection
capability (using Kuperman's notation as defined in Section 2.1). The system
protection derives in part from the ability to detect bad events as they occur
but before the results of these events can cause a system compromise.

A program intended to operate in CuPIDS is divided into two components,
a CuPIDS monitored production process (CPP) and a shadowing CuPIDS
process (CSP) as depicted in Figure 2.

As the figure shows, CuPIDS processes differ from the traditional process
paradigm in the asymmetric sharing of memory between the CSP and CPP.
The CPP is a normal process and contains the code and data structures that
are used to accomplish the tasks for which the program is designed. It may
also contain code and data structures with which information about the state
of the running process is communicated to the security component. In addition
to the normal process code and data structures, the CSP's virtual memory is
modified to contain portions of the CPP's virtual memory space (depicted in
the figure as Shadow Memory). This allows the CSP to directly monitor the
activities of the production component as it executes.

Our initial work assumes the CPP developer is aware of CuPIDS and the
CPP communicates its state to the CSP by sending a stream of messages
about events of interest to CuPIDS. Later work will investigate what types of
real-time monitoring are possible for uninstrumented applications.
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Fig. 2. CSP and CPP details

3.2 Protective Activities

The CuPIDS architecture currently supports three types of protective activ-
ities: Application startup/shutdown validation, state monitoring, including
invariant testing, and execution monitoring.

Application startup/shutdown: Startup tasks include verifying the au-
thenticity of both the CSP and CPP as well as any supporting configuration
files. The CSP is loaded and started executing. It then loads the CPP into
memory, establishes any needed hooks into the CPP's VM space, initial-
izes the various event communication systems, and finally starts the CPP
running. Shutdown tasks include verifying that the CPP shutdown path
followed a legitimate code path. Additionally, any runtime history data is
saved to disk.

State monitoring Assertion verification: By creating appropriate hooks
into the kernel CSP is able to monitor nearly all aspects of the CPP's oper-
ating environment and state, including its entire VM space and any related
kernel data structures and excluding only the internal processor state while
the CPP is on a CPU. One use of this capability is invariant testing. In-
variant testing is a two stage process involving pre-compilation work and
runtime invariant checking. The pre-compilation task involves determining
which variables need monitoring, defining invariants for those variables and
exporting that information in a form that can be used by the CSP. The
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compiler is also used to automatically instrument the CPP by adding event
generation hooks into each function prologue and epilogue. Invariants are
currently snippets of code which could be directly included in the CPP's
code (similar to the run-time debugging tests discussed earlier). They are
compiled into the CSP's code, and when one is used, it is given appropriate
pointers into the CPP's virtual memory space and executed. Currently these
are manually written; however, work is underway to allow a programmer to
indicate, via pragmas, to the compiler that a particular variable needs pro-
tection and the compiler will automatically generate the invariant testing
code in the CSP.

Runtime execution monitoring Runtime monitoring includes a number
of activities and capabilities that give the CSP visibility into the operation
of the CPP. An example includes generating events so the CSP is made
aware of the creation, accesses to, and deletion of a protected variable's
lifespan. Other events export an execution trace to CuPIDS via function call
monitoring, and interactions between the CPP and external environmental
entities such as calls to runtime libraries and the operating system. Call
monitoring consists of the CPP sending a stream of function/library/system
call entry and exit events to the CSP. The CSP then uses a model based upon
how the CPP is supposed to operate to verify if that stream is legitimate.

In addition to the direct monitoring of the CPP performed by the CSP, Cu-
PIDS has a number of background capabilities that augment the CSP's ca-
pabilities. These include the ability to intercept and direct low-level system
activities such as interrupts and signals, controlling the system scheduler to
enforce the segregation of the CuPIDS and system CPUs and ensuring that
whenever a CSP is chosen to run, its associated CSP is also placed on the
CuPIDS' CPU. Additionally, CuPIDS provides a very streamlined, interrupt-
based, communication interface for moving event records from the CPP to the
CSP running on a different CPU.

3.3 Self-healing/Self-protection

There are a number of well-known-to-be-dangerous library and syscalls [23].
Among the most common exploits publicly available are buffer overflows which
use unsafe string handling library functions to overflow vulnerable buffers.
Using a combination of stack modeling, library call event monitoring and the
virtual memory mapping capability it is possible for CuPIDS to automatically
detect and generate detection signatures for certain common classes of vul-
nerabilities such as stack-based overflows. In many cases buffer overflows use
known library function such as strcopy(3). When CuPIDS is notified of a call
to strcopy it can create a copy on write (COW) mapping of the page(s) con-
taining the buffer and surrounding memory region. If information about buffer
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sizes is available to the CSP, either automatically generated or inserted by the
programmer in the form of CuPIDS memory operation events it becomes pos-
sible for CuPIDS to not only detect and generate signatures for anomalous
events, but also to recover from them automatically. It does so by using the
saved copy of stack (or heap) pages to recreate the process' memory state as it
was before the overflow, and copying only the correct amount of data into the
buffer from the corrupted pages. While in the case of an exploit attempt the
data ending up in the buffer may not be what the CPP programmer intended,
the overall effect to the program is the same as if a safe string copy function
such as strncopy(3) had been used. In addition, error variables or signals may
be set to indicate that something unexpected occurred.

4 Implementation

We have implemented a prototype CuPIDS. This section briefly describes the
current state of that prototype. Our experimentation uses FreeBSD, currently
5.3-RELEASE [24]. We have added to the operating system API a set of
CuPIDS specific system calls that give CuPIDS processes visibility into and
control over the execution of a CPP. Examples of the new functionality include
the ability to map an arbitrary portion of the PP's address space into the
address space of a CSP, a means by which signals destined for and some
interrupts caused by the CPP are routed to the monitoring CSP, etc. The
operating system kernel has been modified to perform the simultaneous task
switching of CPPs and CSPs, a CSP protected loading capability as discussed
above in section 3.2, and hooks into various kernel data structures have been
added to allow the CSP better visibility into CPP operation and for runtime
history data gathering.

Our experimentation to date has focused on protecting specific applications 2 .
We perform interactive monitoring based upon automatically generated in-
strumentation from the compiler as well as CPP programmer defined invari-
ants for key variables. CuPIDS has the capability to examine program binaries
and extract explicit white-lists about which system resources are used by the
CPP, and then save this information in a form usable by the CSP. As the
CPP runs it sends messages to the CSP notifying it about operational activi-
ties such as protected variable lifetime events (creation, accesses and deletion)
as well as control flow events (currently all function call entry and exits, to
include library and syscall invocations) are passed to the CSP as well. The
CSP receives these messages and uses them to ensure the CPP is operating
correctly. In the case of variables the CSP performs pre- and post-condition

2 The techniques involved are largely applicable to operating system protection as

well
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invariant checking, and in the case of flow control, it verifies that all function
calls are to and from legitimate locations within the CPP text segment. It also
maintains a model of the CPP call stack and verifies all function returns are
to the correct locations, etc.

We have used this prototype to verify basic CuPIDS functionality. The system
is able to correctly load and execute CPP and CSP components, the CSP is
able to detect invariant and security policy violations as well as illegitimate
control flow changes. Upon detecting a fault or attack, the CSP is able to halt
the PP, raise an alarm, save the state of the CPP's memory and execution
trace history, and in some cases repair the damage from the attack or error,
allowing the CPP to continue execution without interruption. Time-related
testing results are discussed below.

5 Results

The experiments described here demonstrate that it is possible for one process
to efficiently perform realtime runtime error checking on variables in another
process as well as perform simple flow control validation. To demonstrate the
validity of our research hypothesis we demonstrate that CuPIDS can provide
guaranteed detection of certain attacks before a context switching event oc-
curs. This claim cannot be matched by a StUPIDS, even if equipped with a
comparable detector set.

In our experimentation we used a combination of widely-used, open source ap-
plications and servers as well as applications created specifically to test certain
aspects of CuPIDS' functionality. The commonly used applications were WU-
FTP version 2.6.2 and gnats version 3.113.12. These programs were chosen
because they represent software typical of that used in our target environ-
ment, their source code is available so that we could examine and instrument
them, and because they contain exploitable vulnerabilities as demonstrated
by publicly available zero-day exploits.

WU-FTP's ftpd daemon was used to perform performance measurements of
CuPIDS as well as to test CuPIDS' invariant violation detection and self-
healing capabilities. The ftpd daemon was ideal for this purpose because it is
fairly large (about 20000 lines of code), its behavior is representative of many
server-type applications in that it runs for long periods and forks off child
processes to handle requests, and finally because it has a number of buffer
overflow vulnerabilities 3.

3 CVE entries CVE-1999-0878, CAN-2003-0466, and CVE-1999-0368 [25]
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We used gnats-3.113.12 because of the existence of a locally exploitable vulner-
ability 4 . gnats was used to test CuPIDS' ability to detect invariant violations.

We used the CuPIDS prototype to perform a number of experiments, allowing
us to demonstrate the validity of our research hypothesis. A detailed discussion
of those results is available in [7], and is summarized here.

5.1 Test Platform

The experiments described below were run on a MP platform with dual Xeon
2.2GHz processors, 1G RAM, 1 120GB ATA100 drive. Hyperthreading (HTT)
was enabled so the operating system had available 4 CPUs. We recognize that
the performance of HTT processors does not match that of separate CPUs[20];
however, the architecture is useful to us for other reasons. While the results
discussed here do not make use of HTT specific features we use do make use
of the fact that they share architectural components in research discussed in
[7]. For experiments involving CuPIDS, the CSP is the only user of CPU1,
the instrumented ftpd uses all of one CPU's cycles, and the ftp client uses all
of another CPU's cycles, and the system, including the test drivers, mostly
run on the fourth CPU. The test drivers ensure that all file I/O is done on
local drives so that network overhead does not become a factor. During the
non-instrumented experiments CPU1 is held idle to provide ftpd the same
operating environment as it had in the instrumented runs. ftpd was run as
root in standalone mode (command line ftpd -s which causes it to stay in
the foreground and fork processes as needed).

5.2 Runtime Efficiency Tests using WU-FTP

The initial experiments connect to the ftp daemon, log in, and perform 300 ftp
file transfers and one ls for a total of 301 transfers. The file transfer workload
is 1881832400 bytes and the overall workload per experiment is 1881904317
bytes. Three sets of five experimental runs were made, one using the Cu-
PIDS interrupt-based IPC, one using SysV IPC, and one baseline test was
run against an non-instrumented version of WU-FTP. The results are sum-
marized in Table 1.

The initial tests are intended to measure the overhead involved in getting
CuPIDS events out of the CPP and into the CSP, therefore we constructed
a worst-case event load based on program flow control monitoring. In the
instrumented tests, all function calls generate entry and exit events. This

4 CVE CAN-2004-0623[25]
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Event Communications Real Time User Time System Time Throughput

Method (seconds) (seconds) (seconds) (MB/seconds)

Interrupt-based Avg 130.02 0.50 1.51 14.97

Interrupt-based Std Dev 0.52 0.07 0.06 0.05

SysV IPC-based Avg 241.38 0.44 1.81 13.77

SysV IPC-based Std Dev 2.19 0.02 0.06 0.11

Non-Instrumented Avg 118.50 0.38 1.86 16.16

Non-Instrumented Std Dev 0.10 0.03 0.10 0.02
Table 1
WU-FTP Runtime Performance Measurements

includes internal functions, libc and intra-libc calls as well as system calls.
Each event includes caller address and callee address information. These events
are validated against a white list of calls statically extracted from the ftpd
binary. The initial white list contained all the legitimate non-function-pointer-
based function and shared library calls as well as a list of all function pointer
uses. An initial experimental run identical to the timing runs was made to
train the CSP on the actual function pointer usage. The CSP received each
function/library/system call event, verified it against the white list, and used
it to model the CSP's program stack. The timing related tests did not include
embedded invariant tests.

Each experimental run took between two and four minutes and generated
approximately 1.4 million events corresponding to WU-FTP's activities. As
shown in Table 1 the overhead of generating and using those events was less
than ten percent for the CuPIDS IPC as opposed to approximately 100 percent
for the SysV-based IPC. Note that this overhead should be balanced against
the removal of an inline IDS doing the same tasks. Even a standalone IDS
with a similar detector set would be competing for CPU cycles with the CPP,
likely degrading application performance.

5.3 Control Flow Change Results

A number of experiments were run to validate CuPIDS' ability to detect illegit-
imate control flows in the CPP. A summary of those experiments is presented
here and described in more detail in [7].

e Illegitimate Syscall Detection: Both gnats and WU-FTP were used in these
tests. In both applications a buffer was overflowed in such a way that byte-
code contained in the overflow string was executed. The injected code made
a number of system calls from the stack. CuPIDS was able to detect all of
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the illegitimate system calls.
"* Illegitimate Internal Function Call Detection: Both gnats and WU-FTP

were used in these tests. In both applications CuPIDS was able to detect an
internal function call that had been removed from the white list (simulating
the activity of injected code that makes calls to functionality embedded
in the vulnerable application). CuPIDS was also able to detect calls into
functions that bypassed the prologue event generator. It did so by detecting
illegitimate program stack activity in the stack model.

"* Illegitimate Library Call Detection: Both gnats and WU-FTP were used
in these tests. In both applications CuPIDS was able to catch a call to a
library function which was removed from the white list.

"* Spoofing/Masquerading Detection: CuPIDS detected attempts to make li-
brary or system calls from locations other than those specified in the white
lists. This prevents attackers from performing masquerading attacks such
as those described in [26]. The CuPIDS IPC mechanism guards against
spoofed event generation by including in each event the return address for
the generating function as taken from the stack. As the address is placed
on the stack by the processor and reading it occurs in kernel space there is
no way for a user program to spoof this information.

"* Direct Variable Protection: WU-FTP was used for these experiments, which
involved performing invariant testing on simple variables (int, char, simple
structs) and a string buffer. As discussed earlier, CuPIDS was able to detect
illegitimate changes to both classes of variables. In the case of a stack-based
buffer overflow it was able to detect the overflow, save the overflowing data,
repair the corruption to memory following the buffer, terminate the string in
the buffer appropriately (by writing a zero into the end of the buffer), allow
the CPP to continue running, and write the overflow string and information
about the overflow out to disk. In these experiments the detection took place
as the overflow occurred, so CuPIDS was able to halt the CPP before it could
return into the corrupted instruction pointer on the stack. Therefore the
attack was stopped before any control flow change took place-a capability
unique to a parallel monitoring architecture like CuPIDS. Even had the
buffer overflow not been directly detected, CuPIDS would have detected
the control flow change to the stack and may have been able to make the
same repair.

5.4 Desired Supportive Capabilities

While the results presented above show promise, we believe that a paradigm
shift towards multi-processor security may lead to changes in the basic plat-
form upon which architectures like CuPIDS are built. Some areas we anticipate
exploring include:
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Compiler support The compiler can automatically generate events for vari-
able lifecycle operations. As an example, as buffers are allocated and used
appropriate events can be generated and dispatched. Another alternative
is to allow the programmer to direct the compiler to do this work using a
mechanism such as pragma, or assertions.

Hardware support Better support for moving blocks of information be-
tween specific CPUs will be useful. As an example, the shared registers
on the Xeon HTT processors provide a convenient scratchpad for small
amounts of information. Additionally, better debugging capabilities can be
designed. A capability similar to the debug registers but on shared mem-
ory, and possibly on larger data areas would be useful. The ability to set

a memory write breakpoint on a CSP CPU and have it detect writes to
that memory location by other CPUs would reduce the number of messages
needed to keep track of CPP activity. It may be more practical to do this
type of operation on multicore processors.

Operating System Support More efficient means of IPC designed specif-
ically around an asymmetrical MP design such as CuPIDS are possible.

CuPIDS' extensions to the FreeBSD API are a start in this direction, and
the extended inter-processor-interrupt (IPI) message passing system from
the DragonFly BSD variant [27] would probably be useful.

5.5 Self-protection

Mandatory access control (MAC) models such as Biba's integrity-based model
[28], and Bell and LaPadula's multi-level security [29] models might be used to
provide a first-line defense against user application compromise. While MAC
protection systems are not novel, the CuPIDS architecture uses hardware pro-
tection mechanisms in commodity CPUs to define and protect the MAC mech-
anism and CuPIDS themselves against direct attacks that attempt to bypass

its controls.

6 Conclusion

For many information systems, high assurance, in terms of keeping an ap-
plication running in spite of faults or attacks, is more important than raw

performance. This is particularly true for an organization's mission critical
applications and servers. We believe and demonstrate that dedicating one or
more processors in a MP system specifically to security tasks can increase
system robustness in the face of faults and attacks. We further believe offload-
ing the security work from the production parts of the system will allow the
use of security techniques which may be too computationally expensive when
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performed inline.

Examples of such techniques include the runtime debugging checks and asser-
tions employed during the software development process. Checks such as these
are commonly placed in vulnerable or critical code during the debugging and
testing phases of the software lifecycle but are removed from shipping code
because the runtime performance degradation they impose [8]. A great deal
of specifically focused information about how an application is intended to
behave is available to system architects and developers; however, we do not
believe this wealth of information is commonly used in runtime security moni-
toring of production systems. The CuPIDS architecture is specifically designed
to make use of such information in a reasonably efficient manner.

We have proposed a paradigm shift in computer security, one that challenges
conventional wisdom by trading performance for security. Our approach is
based upon running dedicated monitoring functions in parallel with the code
they monitor on a MP system. We believe the CuPIDS architecture to be
more effective than StUPIDS architectures in terms of real-time detection of
bad events as well as offering some novel detection techniques based upon the
low-level and parallel nature of the monitoring. By dedicating computational
resources explicitly to security tasks we are trading performance for security;
however, by offloading some security tasks from the production process into the
security process and running them in parallel we are decreasing the workload
of the system production components. We have constructed a prototype of
this architecture and used it to verify CuPIDS basic functionality.

The CuPIDS architecture is novel in that we explicitly divide the system into
production and security components, embed explicit knowledge of how the
production components are intended to operate into specialized security mon-
itors and ensure the appropriate security component is running on a processor
whenever a particular production component is running on a different pro-
cessor. The architecture allows fine-grained visibility into the operation of a
protected process. We intend the CuPIDS architecture to be detection model
agnostic-capable of supporting many different IDS.

The detection capability of CuPIDS is currently all specification or white-list-
based. Therefore it has a zero false positive error rate; thus the alarms output
from CuPIDS are suitable for use by automated response systems. In fact,
much of CuPIDS strength derives from its automated response capabilities.
Its tightly focused, parallel monitoring capability allows for rapid detection of
and response to illegitimate behavior. The combination of real-time detection
(discussed in Section 2.1) allowed by parallel processing and an ability to
automatically repair some damage afforded by CuPIDS' low-level interface
into the host operating system let CuPIDS not only stop the attacks, but help
maintain operations of critical components of systems.
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